Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1.

نویسندگان

  • Victoria Hutter
  • David Y S Chau
  • Constanze Hilgendorf
  • Alan Brown
  • Anne Cooper
  • Vanessa Zann
  • David I Pritchard
  • Cynthia Bosquillon
چکیده

The impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe (3)H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. (3)H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 were measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on (3)H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in (3)H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity.

Compounds known to modulate P-glycoprotein (P-gp) activity were evaluated in cell monolayers expressing P-gp for their effects on the secretory transport of P-gp substrates paclitaxel, vinblastine, and digoxin. Paclitaxel has been proposed to selectively interact with a binding site on P-gp that is distinct from the vinblastine and digoxin-binding site. Using Madin-Darby canine kidney (MDCK)-mu...

متن کامل

The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers.

When propafenone is given with digoxin, digoxin serum concentrations increase. Although the digoxin-propafenone interaction is well known clinically, the mechanism by which propafenone interferes with digoxin elimination is unclear. To test the hypothesis that propafenone or one or both of its two major metabolites, 5-hydroxypropafenone (5-OHP) and N-depropylpropafenone (NDPP), inhibit the P-gl...

متن کامل

Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies.

Drug delivery across the blood-brain barrier is limited by several mechanisms. One important mechanism is drug efflux, mediated by several transport proteins, including P-glycoprotein. The goal of this work was to examine the effect of a novel drug delivery system, Pluronic block copolymer P85, on P-glycoprotein-mediated efflux from the brain using in vitro and in vivo methods. The hypothesis w...

متن کامل

Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein.

Verapamil is subject to extensive oxidative metabolism mediated by cytochrome P450 enzymes with less than 5% of an oral dose being excreted unchanged in urine. Furthermore, verapamil is known to be a potent inhibitor of P-glycoprotein function. There is evidence from in vivo investigations that some verapamil metabolites might be actively transported. The aim of the present study was to investi...

متن کامل

Data demonstrating the challenges of determining the kinetic parameters of P-gp mediated transport of low-water soluble substrates

The presented data are related to the research article entitled "Characterization of the IPEC-J2 MDR1 (iP-gp) cell line as a tool for identification of P-gp substrates" by Ozgur et al. (2017) [1]. This data report describes the challenges of investigating the concentration-dependent transport of P-glycoprotein (P-gp) substrates with relatively low aqueous solubility. Thus, we provide solubility...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2014